前言
加密算法是密码技术的核心,有些算法已经遭到破译,有些安全度不高,有些强度不明,有些待进—步分析,有些需要深入 研究,而神秘的加密算法世界,又会有新的成员加入,期待更安全的算法诞生。
对称加密算法
说明
在对称加密算法中,加密使用的密钥和解密使用的密钥是相同的。也就是说,加密和解密都是使用的同一个密钥。因此对称 加密算法要保证安全性的话,密钥要做好保密,只能让使用的人知道,不能对外公开。
「密钥」,一般就是一个字符串或数字,在加密或者解密时传递给加密/解密算法。
常见的对称加密算法:DES、3DES、DESX、Blowfish、IDEA、RC4、RC5、RC6和AES
AES
简介
AES加密算法是密码学中的高级加密标准,该加密算法采用对称分组密码体制,密钥长度的最少支持为128、192、256, 分组长度128位,算法应易于各种硬件和软件实现。这种加密算法是美国联邦政府采用的区块加密标准,这个标准用来替 代原先的DES,已经被多方分析且广为全世界所使用。
AES加密算法被设计为支持128/192/256位(/32=nb)数据块大小(即分组长度);支持128/192/256位(/32=nk) 密码长度,在10进制里,对应34×1038、62×1057、1.1×1077个密钥。
DES
简介
DES加密算法是一种分组密码,以64位为分组对数据加密,它的密钥长度是56位,加密解密用同一算法。
DES加密算法是对密钥进行保密,而公开算法,包括加密和解密算法。这样,只有掌握了和发送方相同密钥的人才能解读 由DES加密算法加密的密文数据。因此,破译DES加密算法实际上就是搜索密钥的编码。
对于56位长度的密钥来说,如果用穷举法来进行搜索的话,其运算次数为256。随着计算机系统能力的不断发展,DES的安 全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过,DES现在仅用于旧系统的鉴 定,而更多地选择新的加密标准。
C# Code
#region DES加密解密 /// <summary> /// DES加密 /// </summary> /// <param name="data">加密数据</param> /// <param name="key">8位字符的密钥字符串</param> /// <param name="iv">8位字符的初始化向量字符串</param> /// <returns></returns> public static string DESEncrypt(string data, string key, string iv) { byte[] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(key); byte[] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(iv); DESCryptoServiceProvider cryptoProvider = new DESCryptoServiceProvider(); int i = cryptoProvider.KeySize; MemoryStream ms = new MemoryStream(); CryptoStream cst = new CryptoStream(ms, cryptoProvider.CreateEncryptor(byKey, byIV), CryptoStreamMode.Write); StreamWriter sw = new StreamWriter(cst); sw.Write(data); sw.Flush(); cst.FlushFinalBlock(); sw.Flush(); return Convert.ToBase64String(ms.GetBuffer(), 0, (int)ms.Length); } /// <summary> /// DES解密 /// </summary> /// <param name="data">解密数据</param> /// <param name="key">8位字符的密钥字符串(需要和加密时相同)</param> /// <param name="iv">8位字符的初始化向量字符串(需要和加密时相同)</param> /// <returns></returns> public static string DESDecrypt(string data, string key, string iv) { byte[] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(key); byte[] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(iv); byte[] byEnc; try { byEnc = Convert.FromBase64String(data); } catch { return null; } DESCryptoServiceProvider cryptoProvider = new DESCryptoServiceProvider(); MemoryStream ms = new MemoryStream(byEnc); CryptoStream cst = new CryptoStream(ms, cryptoProvider.CreateDecryptor(byKey, byIV), CryptoStreamMode.Read); StreamReader sr = new StreamReader(cst); return sr.ReadToEnd(); } #endregion
3DES
C# Code
#region 3DES 加密解密 public static string DES3Encrypt(string data, string key) { TripleDESCryptoServiceProvider DES = new TripleDESCryptoServiceProvider(); DES.Key = ASCIIEncoding.ASCII.GetBytes(key); DES.Mode = CipherMode.CBC; DES.Padding = PaddingMode.PKCS7; ICryptoTransform DESEncrypt = DES.CreateEncryptor(); byte[] Buffer = ASCIIEncoding.ASCII.GetBytes(data); return Convert.ToBase64String(DESEncrypt.TransformFinalBlock(Buffer, 0, Buffer.Length)); } public static string DES3Decrypt(string data, string key) { TripleDESCryptoServiceProvider DES = new TripleDESCryptoServiceProvider(); DES.Key = ASCIIEncoding.ASCII.GetBytes(key); DES.Mode = CipherMode.CBC; DES.Padding = System.Security.Cryptography.PaddingMode.PKCS7; ICryptoTransform DESDecrypt = DES.CreateDecryptor(); string result = ""; try { byte[] Buffer = Convert.FromBase64String(data); result = ASCIIEncoding.ASCII.GetString(DESDecrypt.TransformFinalBlock(Buffer, 0, Buffer.Length)); } catch (Exception e) { } return result; } #endregion
非对称加密算法
说明
非对称加密算法采用「公钥密码体制(public-key cryptography)」,公钥密码体制分为三部分公钥、私钥、加密解密算法, 它的加密解密过程如下:
- 加密:通过加密算法和公钥对内容(或者说明文)进行加密,得到密文。加密过程需要用到公钥。
- 解密:通过解密算法和私钥对密文进行解密,得到明文。解密过程需要用到解密算法和私钥。注意,由公钥加密的内容,只能由私钥进行解密,也就是说,由公钥加密的内容,如果不知道私钥,是无法解密的。
公钥密码体制的公钥和算法都是公开的(这是为什么叫公钥密码体制的原因),私钥是保密的。大家都以使用公钥进行加密, 但是只有私钥的持有者才能解密。在实际的使用中,有需要的人会生成一对公钥和私钥,把公钥发布出去给别人使用,自 己保留私钥。
常见的非对称加密算法:RSA、ECC(移动设备用)、Diffie-Hellman、El Gamal、DSA(数字签名用)
RSA
简介
RSA(Rivest–Shamir–Adleman)加密算法是目前最有影响力的公钥加密算法,并且被普遍认为是目前最优秀的公钥方案之一。 RSA是第一个能同时用于加密和数宇签名的算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。
RSA加密算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可 以将乘积公开作为加密密钥。
RSA密码体制是一种公钥密码体制,公钥公开,私钥保密,它的加密解密算法是公开的。 由公钥加密的内容可以并且只能由私钥 进行解密,并且由私钥加密的内容可以并且只能由公钥进行解密。也就是说,RSA的这一对公钥、私钥都可以用来加密和解密,并 且一方加密的内容可以由并且只能由对方进行解密。
「签名」,签名就是在信息的后面再加上一段内容,可以证明信息没有被修改过,怎么样可以达到这个效果呢? 一般是对信息做一个hash计算得到一个hash值,注意,这个过程是不可逆的,也就是说无法通过hash值得出原来的信息内容。 再把信息发送出去时,把这个hash值加密后做为一个签名和信息一起发出去。 接收方在收到信息后,会重新计算信息的hash值, 并和信息所附带的hash值(解密后)进行对比,如果一致,就说明信息的内容没有被修改过,因为这里hash计算可以保证不同的内 容一定会得到不同的hash值,所以只要内容一被修改,根据信息内容计算的hash值就会变化。 当然,不怀好意的人也可以修改信息内容的同时也修改hash值,从而让它们可以相匹配,为了防止这种情况,hash值一般都会加 密后(也就是签名)再和信息一起发送,以保证这个hash值不被修改。至于如何让别人可以解密这个签名,这个过程涉及到数字证 书等概念。
举例说明:外部系统(B)调用核心系统(A)接口时,需通过非对称加密算法解决安全上的问题,如伪装调用、模拟调用等。 (此例通过公钥加密,私钥解密的方式)
- 首先,在A端生成密钥对,得到public_key.pem,private_key.pem。(生成密钥对方法参考:https://www.cnblogs.com/taoshihan/p/6340854.html)
- 在A端编写签名方法(就是使用公钥进行加密的过程),加密的数据可以是字符串或时间。如果是加密数据是时间,如'Y-m-d H:00:00',代表当前整点(小时)内有效。
- 在B端获取到第1步中生成的public_key.pem,通过public_key.pem调用A端签名方法。
- 请求B端接口时,A端首先进行签名验证,验证通过则允许调用,不通过则提示错误信息。
Hash算法
说明
Hash算法特别的地方在于它是一种单向算法,用户可以通过Hash算法对目标信息生成一段特定长度的唯一的Hash值,却不能通 过这个Hash值重新获得目标信息。因此Hash算法常用在不可还原的密码存储、信息完整性校验等。
常见的Hash算法:MD5、HAVAL、SHA、HMAC、HMAC-MD5、HMAC-SHA1
MD5
简介
MD5为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护。对MD5加密算法简要的叙述可以为:MD5以512位 分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将 这四个32位分组级联后将生成—个128位散列值。
MD5被广泛用于各种软件的密码认证和钥匙识别上。MD5用的是哈希函数,它的典型应用是对一段信息产生信息摘要,以防止被 篡改。
MD5的典型应用是对一段Message产生fingerprin指纹,以防止被“篡改”。如果再有—个第三方的认证机,用MD5还可以防止文 件作者的“抵赖”,这就是所谓的数字签名应用
MD5还广泛用于操作系统的登陆认证上,如UNIX、各类BSD系统登录密码、数字签名等诸多方。
C# Code
#region MD5加密 /// <summary> /// MD5加密 /// </summary> /// <param name="input">需要加密的字符串</param> /// <returns></returns> public static string MD5Encrypt(string input) { return MD5Encrypt(input, new UTF8Encoding()); } /// <summary> /// MD5加密 /// </summary> /// <param name="input">需要加密的字符串</param> /// <param name="encode">字符的编码</param> /// <returns></returns> public static string MD5Encrypt(string input, Encoding encode) { MD5 md5 = new MD5CryptoServiceProvider(); byte[] t = md5.ComputeHash(encode.GetBytes(input)); StringBuilder sb = new StringBuilder(32); for (int i = 0; i < t.Length; i++) sb.Append(t[i].ToString("x").PadLeft(2, '0')); return sb.ToString(); } /// <summary> /// MD5对文件流加密 /// </summary> /// <param name="sr"></param> /// <returns></returns> public static string MD5Encrypt(Stream stream) { MD5 md5serv = MD5CryptoServiceProvider.Create(); byte[] buffer = md5serv.ComputeHash(stream); StringBuilder sb = new StringBuilder(); foreach (byte var in buffer) sb.Append(var.ToString("x2")); return sb.ToString(); } /// <summary> /// MD5加密(返回16位加密串) /// </summary> /// <param name="input"></param> /// <param name="encode"></param> /// <returns></returns> public static string MD5Encrypt16(string input, Encoding encode) { MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider(); string result = BitConverter.ToString(md5.ComputeHash(encode.GetBytes(input)), 4, 8); result = result.Replace("-", ""); return result; } #endregion
其他
Base64编码算法
简介
BASE64其实不是安全领域下的加密解密算法,只能算是一个编码算法。是网络上最常见的用于传输8bit字节代码的编码方式之一, Base64编码可用于在HTTP环境下传递较长的标识信息。
例如,在JAVAPERSISTENCE系统HIBEMATE中,采用了Base64来将一个较长的唯一标识符编码为一个字符串,用作HTTP表单和 HTTPGETURL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时, 采用Base64编码不仅比较简短,同时也具有不可读性,即所编码的数据不会被人用肉眼所直接看到。
C# Code
/// <summary> /// 加密 /// </summary> /// <param name="codeType"></param> /// <param name="code"></param> /// <returns></returns> public static string Base64Encrypt(string codeType,string code) { string encode = ""; byte[] bytes = Encoding.GetEncoding(codeType).GetBytes(code); try { encode = Convert.ToBase64String(bytes); } catch (Exception ex) { encode = code; } return encode; } /// <summary> /// 解密 /// </summary> /// <param name="codeType"></param> /// <param name="code"></param> /// <returns></returns> public static string Base64Decrypt(string codeType,string code) { string decode = ""; byte[] bytes = Convert.FromBase64String(code); try { decode = Encoding.GetEncoding(codeType).GetString(bytes); //将指定字节数组中的一个字节序列解码为一个字符串。 } catch (Exception ex) { decode = code; } return decode; }
//简写
#region Base64加密解密 /// <summary> /// Base64加密 /// </summary> /// <param name="input">需要加密的字符串</param> /// <returns></returns> public static string Base64Encrypt(string input) { return Base64Encrypt(input, new UTF8Encoding()); } /// <summary> /// Base64加密 /// </summary> /// <param name="input">需要加密的字符串</param> /// <param name="encode">字符编码</param> /// <returns></returns> public static string Base64Encrypt(string input, Encoding encode) { return Convert.ToBase64String(encode.GetBytes(input)); } /// <summary> /// Base64解密 /// </summary> /// <param name="input">需要解密的字符串</param> /// <returns></returns> public static string Base64Decrypt(string input) { return Base64Decrypt(input, new UTF8Encoding()); } /// <summary> /// Base64解密 /// </summary> /// <param name="input">需要解密的字符串</param> /// <param name="encode">字符的编码</param> /// <returns></returns> public static string Base64Decrypt(string input, Encoding encode) { return encode.GetString(Convert.FromBase64String(input)); } #endregion
JavaScript Code
// private property var _keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="; function encodeBase64(input) { var output = ""; var chr1, chr2, chr3, enc1, enc2, enc3, enc4; var i = 0; input = _utf8_encode(input); while (i < input.length) { chr1 = input.charCodeAt(i++); chr2 = input.charCodeAt(i++); chr3 = input.charCodeAt(i++); enc1 = chr1 >> 2; enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); enc3 = ((chr2 & 15) << 2) | (chr3 >> 6); enc4 = chr3 & 63; if (isNaN(chr2)) { enc3 = enc4 = 64; } else if (isNaN(chr3)) { enc4 = 64; } output +=_keyStr.charAt(enc1); output+= _keyStr.charAt(enc2); output+=_keyStr.charAt(enc3); output+= _keyStr.charAt(enc4); } return output; } //Base64 解密 function decodeBase64(input) { var output = ""; var chr1, chr2, chr3; var enc1, enc2, enc3, enc4; var i = 0; input = input.replace(/[^A-Za-z0-9\+\/\=]/g, ""); while (i < input.length) { enc1 = _keyStr.indexOf(input.charAt(i++)); enc2 = _keyStr.indexOf(input.charAt(i++)); enc3 = _keyStr.indexOf(input.charAt(i++)); enc4 = _keyStr.indexOf(input.charAt(i++)); chr1 = (enc1 << 2) | (enc2 >> 4); chr2 = ((enc2 & 15) << 4) | (enc3 >> 2); chr3 = ((enc3 & 3) << 6) | enc4; output = output + String.fromCharCode(chr1); if (enc3 != 64) { output = output + String.fromCharCode(chr2); } if (enc4 != 64) { output = output + String.fromCharCode(chr3); } } output = _utf8_decode(output); return output; } // private method for UTF-8 decoding function _utf8_decode(utftext) { var string = ""; var i = 0; var c = c1 = c2 = 0; while (i < utftext.length) { c = utftext.charCodeAt(i); if (c < 128) { string += String.fromCharCode(c); i++; } else if ((c > 191) && (c < 224)) { c2 = utftext.charCodeAt(i + 1); string += String.fromCharCode(((c & 31) << 6) | (c2 & 63)); i += 2; } else { c2 = utftext.charCodeAt(i + 1); c3 = utftext.charCodeAt(i + 2); string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63)); i += 3; } } return string; }
HTTPS
HTTPS(全称:Hypertext Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲 是HTTP的安全版。即HTTP下加入SSL层,HTTPS的安全基础是SSL(SSL使用40 位关键字作为RC4流加密算法,这对于商业信息 的加密是合适的。),因此加密的详细内容就需要SSL。
https:URL表明它使用了HTTP,但HTTPS存在不同于HTTP的默认端口及一个加密/身份验证层(在HTTP与TCP之间),提供了身 份验证与加密通讯方法,现在它被广泛用于万维网上安全敏感的通讯,例如交易支付方面。它的主要作用可以分为两种:一种是建 立一个信息安全通道,来保证数据传输的安全;另一种就是确认网站的真实性。
总结
- 加密算法是可逆的,用来对敏感数据进行保护。散列算法(签名算法、哈希算法)是不可逆的,主要用于身份验证。
- 对称加密算法使用同一个密匙加密和解密,速度快,适合给大量数据加密。对称加密客户端和服务端使用同一个密匙,存在被抓包破解的风险。
- 非对称加密算法使用公钥加密,私钥解密,私钥签名,公钥验签。安全性比对称加密高,但速度较慢。非对称加密使用两个密匙,服务端和客户端密匙不一样,私钥放在服务端,黑客一般是拿不到的,安全性高。
- Base64不是安全领域下的加解密算法,只是一个编码算法,通常用于把二进制数据编码为可写的字符形式的数据,特别适合在http,mime协议下的网络快速传输数据。UTF-8和GBK中文的Base64编码结果是不同的。采用Base64编码不仅比较简短,同时也具有不可读性,即所编码的数据不会被人用肉眼所直接看到,但这种方式很初级,很简单。Base64可以对图片文件进行编码传输。
- https协议广泛用于万维网上安全敏感的通讯,例如交易支付方面。它的主要作用可以分为两种:一种是建立一个信息安全通道,来保证数据传输的安全;另一种就是确认网站的真实性。
- 大量数据加密建议采用对称加密算法,提高加解密速度;小量的机密数据,可以采用非对称加密算法。在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
- MD5标准密钥长度128位(128位是指二进制位。二进制太长,所以一般都改写成16进制,每一位16进制数可以代替4位二进制数,所以128位二进制数写成16进制就变成了128/4=32位。16位加密就是从32位MD5散列中把中间16位提取出来);sha1标准密钥长度160位(比MD5摘要长32位),Base64转换后的字符串理论上将要比原来的长1/3。